Nuprl Lemma : eclass0-disjoint-classrel
∀[Info,A,B,C:Type]. ∀[Y:EClass(A)]. ∀[X:EClass(B)]. ∀[f:Id ⟶ B ⟶ bag(C)]. ∀[es:EO+(Info)].
  (disjoint-classrel(es;B;X;A;Y) ⇒ disjoint-classrel(es;C;(f o X);A;Y))
Proof
Definitions occuring in Statement : 
eclass0: (f o X), 
disjoint-classrel: disjoint-classrel(es;A;X;B;Y), 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
Id: Id, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type, 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
disjoint-classrel: disjoint-classrel(es;A;X;B;Y), 
all: ∀x:A. B[x], 
member: t ∈ T, 
or: P ∨ Q, 
not: ¬A, 
false: False, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
squash: ↓T, 
exists: ∃x:A. B[x], 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
guard: {T}, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2]
Latex:
\mforall{}[Info,A,B,C:Type].  \mforall{}[Y:EClass(A)].  \mforall{}[X:EClass(B)].  \mforall{}[f:Id  {}\mrightarrow{}  B  {}\mrightarrow{}  bag(C)].  \mforall{}[es:EO+(Info)].
    (disjoint-classrel(es;B;X;A;Y)  {}\mRightarrow{}  disjoint-classrel(es;C;(f  o  X);A;Y))
Date html generated:
2016_05_16-PM-02_09_25
Last ObjectModification:
2015_12_29-PM-02_28_39
Theory : event-ordering
Home
Index