Nuprl Lemma : eclass1-single-val
∀[Info,B,C:Type]. ∀[X:EClass(B)]. ∀[f:Id ⟶ B ⟶ C]. ∀[es:EO+(Info)].
  single-valued-classrel(es;(f o X);C) supposing single-valued-classrel(es;X;B)
Proof
Definitions occuring in Statement : 
eclass1: (f o X), 
single-valued-classrel: single-valued-classrel(es;X;T), 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
Id: Id, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
single-valued-classrel: single-valued-classrel(es;X;T), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
squash: ↓T, 
exists: ∃x:A. B[x], 
prop: ℙ, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2]
Latex:
\mforall{}[Info,B,C:Type].  \mforall{}[X:EClass(B)].  \mforall{}[f:Id  {}\mrightarrow{}  B  {}\mrightarrow{}  C].  \mforall{}[es:EO+(Info)].
    single-valued-classrel(es;(f  o  X);C)  supposing  single-valued-classrel(es;X;B)
Date html generated:
2016_05_16-PM-02_10_30
Last ObjectModification:
2015_12_29-PM-02_29_06
Theory : event-ordering
Home
Index