Nuprl Lemma : es-E-interface-conditional-subtype1
∀[Info:Type]. ∀[es:EO+(Info)]. ∀[X,Y:EClass(Top)].  (E(X) ⊆r E([X?Y]))
Proof
Definitions occuring in Statement : 
es-E-interface: E(X), 
cond-class: [X?Y], 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
top: Top, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2]
Latex:
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X,Y:EClass(Top)].    (E(X)  \msubseteq{}r  E([X?Y]))
Date html generated:
2016_05_16-PM-02_53_30
Last ObjectModification:
2015_12_29-AM-11_18_20
Theory : event-ordering
Home
Index