Nuprl Lemma : es-E-interface-conditional-subtype_rel
∀[Info:Type]. ∀[es:EO+(Info)]. ∀[X,Y,Z:EClass(Top)].  (E([X?Y]) ⊆r E(Z)) supposing ((E(Y) ⊆r E(Z)) and (E(X) ⊆r E(Z)))
Proof
Definitions occuring in Statement : 
es-E-interface: E(X), 
cond-class: [X?Y], 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
top: Top, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
es-E-interface: E(X), 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
or: P ∨ Q, 
prop: ℙ
Latex:
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X,Y,Z:EClass(Top)].
    (E([X?Y])  \msubseteq{}r  E(Z))  supposing  ((E(Y)  \msubseteq{}r  E(Z))  and  (E(X)  \msubseteq{}r  E(Z)))
Date html generated:
2016_05_16-PM-02_53_01
Last ObjectModification:
2015_12_29-AM-11_26_42
Theory : event-ordering
Home
Index