Nuprl Lemma : es-fix-order-preserving
∀[Info:Type]
  ∀es:EO+(Info). ∀X:EClass(Top). ∀f:E(X) ⟶ E(X).
    ((∀x:E(X). f x c≤ x) ⇒ global-order-preserving(es;X;f) ⇒ interface-order-preserving(es;X;λe.f**(e)))
Proof
Definitions occuring in Statement : 
global-order-preserving: global-order-preserving(es;X;f), 
interface-order-preserving: interface-order-preserving(es;X;f), 
es-E-interface: E(X), 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
es-fix: f**(e), 
es-causle: e c≤ e', 
uall: ∀[x:A]. B[x], 
top: Top, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
global-order-preserving: global-order-preserving(es;X;f), 
interface-order-preserving: interface-order-preserving(es;X;f), 
member: t ∈ T, 
uimplies: b supposing a, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
es-locl: (e <loc e'), 
es-causl: (e < e'), 
squash: ↓T, 
rev_implies: P ⇐ Q, 
subtype_rel: A ⊆r B, 
es-E-interface: E(X), 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2]
Latex:
\mforall{}[Info:Type]
    \mforall{}es:EO+(Info).  \mforall{}X:EClass(Top).  \mforall{}f:E(X)  {}\mrightarrow{}  E(X).
        ((\mforall{}x:E(X).  f  x  c\mleq{}  x)
        {}\mRightarrow{}  global-order-preserving(es;X;f)
        {}\mRightarrow{}  interface-order-preserving(es;X;\mlambda{}e.f**(e)))
Date html generated:
2016_05_16-PM-10_20_54
Last ObjectModification:
2016_01_17-PM-07_29_27
Theory : event-ordering
Home
Index