Nuprl Lemma : es-functional-class-implies-at
∀[Info,T:Type]. ∀[es:EO+(Info)]. ∀[X:EClass(T)].  ∀[e:E]. X is functional at e supposing X is functional
Proof
Definitions occuring in Statement : 
es-functional-class-at: X is functional at e, 
es-functional-class: X is functional, 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
es-E: E, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
es-functional-class: X is functional, 
and: P ∧ Q, 
es-functional-class-at: X is functional at e, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
es-total-class: es-total-class(es;X), 
all: ∀x:A. B[x], 
classrel: v ∈ X(e), 
class-ap: X(e), 
uiff: uiff(P;Q), 
subtype_rel: A ⊆r B, 
nat: ℕ, 
decidable: Dec(P), 
or: P ∨ Q, 
le: A ≤ B, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
prop: ℙ, 
single-valued-classrel: single-valued-classrel(es;X;T), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2]
Latex:
\mforall{}[Info,T:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(T)].
    \mforall{}[e:E].  X  is  functional  at  e  supposing  X  is  functional
Date html generated:
2016_05_16-PM-01_43_31
Last ObjectModification:
2016_01_17-PM-07_51_06
Theory : event-ordering
Home
Index