Nuprl Lemma : es-interface-extensionality

[Info,A:Type]. ∀[X,Y:EClass(A)].
  (X Y ∈ EClass(A)) supposing 
     ((∀es:EO+(Info). ∀e:E.  ((↑e ∈b X)  (↑e ∈b Y)  (X(e) Y(e) ∈ A))) and 
     (∀es:EO+(Info). ∀e:E.  (↑e ∈b ⇐⇒ ↑e ∈b Y)) and 
     Singlevalued(X) and 
     Singlevalued(Y))


Proof




Definitions occuring in Statement :  sv-class: Singlevalued(X) eclass-val: X(e) in-eclass: e ∈b X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a eclass: EClass(A[eo; e]) subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] implies:  Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] all: x:A. B[x] top: Top so_apply: x[s] guard: {T} sv-class: Singlevalued(X) in-eclass: e ∈b X eclass-val: X(e) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q assert: b ifthenelse: if then else fi  iff: ⇐⇒ Q true: True cand: c∧ B decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A bfalse: ff sq_type: SQType(T) bnot: ¬bb nequal: a ≠ b ∈  nat: rev_implies:  Q squash: T le: A ≤ B

Latex:
\mforall{}[Info,A:Type].  \mforall{}[X,Y:EClass(A)].
    (X  =  Y)  supposing 
          ((\mforall{}es:EO+(Info).  \mforall{}e:E.    ((\muparrow{}e  \mmember{}\msubb{}  X)  {}\mRightarrow{}  (\muparrow{}e  \mmember{}\msubb{}  Y)  {}\mRightarrow{}  (X(e)  =  Y(e))))  and 
          (\mforall{}es:EO+(Info).  \mforall{}e:E.    (\muparrow{}e  \mmember{}\msubb{}  X  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}e  \mmember{}\msubb{}  Y))  and 
          Singlevalued(X)  and 
          Singlevalued(Y))



Date html generated: 2016_05_16-PM-02_32_03
Last ObjectModification: 2016_01_17-PM-07_37_44

Theory : event-ordering


Home Index