Nuprl Lemma : es-interface-sum-non-neg
∀[Info:Type]. ∀[es:EO+(Info)]. ∀[X:EClass(ℤ)].  ∀[e:E]. (0 ≤ Σ≤e(X)) supposing ∀e:E(X). (0 ≤ X(e))
Proof
Definitions occuring in Statement : 
es-interface-sum: Σ≤e(X), 
es-E-interface: E(X), 
eclass-val: X(e), 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
es-E: E, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
le: A ≤ B, 
all: ∀x:A. B[x], 
natural_number: $n, 
int: ℤ, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
es-interface-sum: Σ≤e(X), 
es-interface-local-state: local-state(f;base;X;e), 
le: A ≤ B, 
and: P ∧ Q, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
top: Top, 
so_lambda: λ2x.t[x], 
es-E-interface: E(X), 
sq_type: SQType(T), 
guard: {T}, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
true: True, 
so_apply: x[s], 
less_than': less_than'(a;b), 
nat: ℕ, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
uiff: uiff(P;Q), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
bfalse: ff
Latex:
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(\mBbbZ{})].    \mforall{}[e:E].  (0  \mleq{}  \mSigma{}\mleq{}e(X))  supposing  \mforall{}e:E(X).  (0  \mleq{}  X(e))
Date html generated:
2016_05_17-AM-07_11_51
Last ObjectModification:
2016_01_17-PM-03_04_14
Theory : event-ordering
Home
Index