Nuprl Lemma : es-interface-union-left
∀[Info,A:Type]. ∀[X:EClass(A)]. ∀[Y:EClass(Top)].  left(X+Y) = X ∈ EClass(A) supposing Singlevalued(X)
Proof
Definitions occuring in Statement : 
es-interface-union: X+Y, 
es-interface-left: left(X), 
sv-class: Singlevalued(X), 
eclass: EClass(A[eo; e]), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
top: Top, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
eclass: EClass(A[eo; e]), 
es-interface-union: X+Y, 
es-interface-left: left(X), 
eclass-compose2: eclass-compose2(f;X;Y), 
eclass-compose1: f o X, 
in-eclass: e ∈b X, 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
ifthenelse: if b then t else f fi , 
top: Top, 
eq_int: (i =z j), 
bfalse: ff, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
prop: ℙ, 
nat: ℕ, 
cand: A c∧ B, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
single-bag: {x}, 
bag-only: only(bs), 
bag-separate: bag-separate(bs), 
pi1: fst(t), 
bag-mapfilter: bag-mapfilter(f;P;bs), 
bag-filter: [x∈b|p[x]], 
bag-map: bag-map(f;bs), 
isl: isl(x), 
outl: outl(x), 
empty-bag: {}, 
iff: P ⇐⇒ Q, 
guard: {T}, 
rev_implies: P ⇐ Q
Latex:
\mforall{}[Info,A:Type].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(Top)].    left(X+Y)  =  X  supposing  Singlevalued(X)
Date html generated:
2016_05_16-PM-10_36_44
Last ObjectModification:
2016_01_17-PM-07_24_21
Theory : event-ordering
Home
Index