Nuprl Lemma : filter-image-interface-accum-equal
∀[Info,A1,B1,A2,B2,C:Type]. ∀[X1:EClass(A1)]. ∀[X2:EClass(A2)]. ∀[b1:B1]. ∀[b2:B2]. ∀[acc1:B1 ⟶ A1 ⟶ B1].
∀[acc2:B2 ⟶ A2 ⟶ B2]. ∀[F1:B1 ⟶ bag(C)]. ∀[F2:B2 ⟶ bag(C)].
  (F1[es-interface-accum(acc1;b1;X1)] = F2[es-interface-accum(acc2;b2;X2)] ∈ EClass(C)) supposing 
     ((∀a:B1. ∀b:B2.
         (((F1 a) = (F2 b) ∈ bag(C))
         ⇒ (∀es:EO+(Info). ∀e:E.  ((↑e ∈b X1) ⇒ (↑e ∈b X1) ⇒ (F1[acc1 a X1(e)] = F2[acc2 b X2(e)] ∈ bag(C)))))) and 
     (F1[b1] = F2[b2] ∈ bag(C)) and 
     (∀es:EO+(Info). ∀e:E.  (↑e ∈b X1 ⇐⇒ ↑e ∈b X2)))
Proof
Definitions occuring in Statement : 
es-interface-accum: es-interface-accum(f;x;X), 
es-filter-image: f[X], 
eclass-val: X(e), 
in-eclass: e ∈b X, 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
es-E: E, 
assert: ↑b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T, 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
top: Top, 
so_apply: x[s], 
es-E-interface: E(X), 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
sq_type: SQType(T), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
true: True
Latex:
\mforall{}[Info,A1,B1,A2,B2,C:Type].  \mforall{}[X1:EClass(A1)].  \mforall{}[X2:EClass(A2)].  \mforall{}[b1:B1].  \mforall{}[b2:B2].  \mforall{}[acc1:B1
                                                                                                                                                                                      {}\mrightarrow{}  A1
                                                                                                                                                                                      {}\mrightarrow{}  B1].
\mforall{}[acc2:B2  {}\mrightarrow{}  A2  {}\mrightarrow{}  B2].  \mforall{}[F1:B1  {}\mrightarrow{}  bag(C)].  \mforall{}[F2:B2  {}\mrightarrow{}  bag(C)].
    (F1[es-interface-accum(acc1;b1;X1)]  =  F2[es-interface-accum(acc2;b2;X2)])  supposing 
          ((\mforall{}a:B1.  \mforall{}b:B2.
                  (((F1  a)  =  (F2  b))
                  {}\mRightarrow{}  (\mforall{}es:EO+(Info).  \mforall{}e:E.
                              ((\muparrow{}e  \mmember{}\msubb{}  X1)  {}\mRightarrow{}  (\muparrow{}e  \mmember{}\msubb{}  X1)  {}\mRightarrow{}  (F1[acc1  a  X1(e)]  =  F2[acc2  b  X2(e)])))))  and 
          (F1[b1]  =  F2[b2])  and 
          (\mforall{}es:EO+(Info).  \mforall{}e:E.    (\muparrow{}e  \mmember{}\msubb{}  X1  \mLeftarrow{}{}\mRightarrow{}  \muparrow{}e  \mmember{}\msubb{}  X2)))
Date html generated:
2016_05_17-AM-06_56_03
Last ObjectModification:
2015_12_29-AM-00_21_40
Theory : event-ordering
Home
Index