Nuprl Lemma : forkable-process_wf
∀[M,E:Type ⟶ Type].
  (∀[g:⋂T:Type. (T ⟶ E[T])]. ∀[f:⋂T:Type. (M[T] ⟶ 𝔹)]. ∀[P:process(P.M[P];P.E[P])].
     (forkable-process(f;g;P) ∈ process(P.M[P];P.E[P]))) supposing 
     (Continuous+(T.E[T]) and 
     Continuous+(T.M[T]))
Proof
Definitions occuring in Statement : 
forkable-process: forkable-process(f;g;P), 
process: process(P.M[P];P.E[P]), 
strong-type-continuous: Continuous+(T.F[T]), 
bool: 𝔹, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
member: t ∈ T, 
isect: ⋂x:A. B[x], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
forkable-process: forkable-process(f;g;P), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
bfalse: ff, 
so_apply: x[s1;s2;s3], 
prop: ℙ, 
subtype_rel: A ⊆r B
Latex:
\mforall{}[M,E:Type  {}\mrightarrow{}  Type].
    (\mforall{}[g:\mcap{}T:Type.  (T  {}\mrightarrow{}  E[T])].  \mforall{}[f:\mcap{}T:Type.  (M[T]  {}\mrightarrow{}  \mBbbB{})].  \mforall{}[P:process(P.M[P];P.E[P])].
          (forkable-process(f;g;P)  \mmember{}  process(P.M[P];P.E[P])))  supposing 
          (Continuous+(T.E[T])  and 
          Continuous+(T.M[T]))
Date html generated:
2016_05_16-AM-11_45_07
Last ObjectModification:
2015_12_29-PM-01_15_33
Theory : event-ordering
Home
Index