Nuprl Lemma : fpf-contains-union-join-left2
∀[A:Type]. ∀[B:A ⟶ Type].
  ∀eq:EqDecider(A). ∀f,h,g:a:A fp-> B[a] List. ∀R:⋂a:A. ((B[a] List) ⟶ B[a] ⟶ 𝔹).
    (h ⊆⊆ f ⇒ h ⊆⊆ fpf-union-join(eq;R;f;g))
Proof
Definitions occuring in Statement : 
fpf-union-join: fpf-union-join(eq;R;f;g), 
fpf-contains: f ⊆⊆ g, 
fpf: a:A fp-> B[a], 
list: T List, 
deq: EqDecider(T), 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
isect: ⋂x:A. B[x], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
fpf-contains: f ⊆⊆ g, 
member: t ∈ T, 
cand: A c∧ B, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
top: Top, 
prop: ℙ, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
sq_type: SQType(T), 
guard: {T}, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
or: P ∨ Q, 
true: True, 
l_contains: A ⊆ B, 
l_all: (∀x∈L.P[x]), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
less_than: a < b, 
squash: ↓T, 
fpf-cap: f(x)?z, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
bfalse: ff
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].
    \mforall{}eq:EqDecider(A).  \mforall{}f,h,g:a:A  fp->  B[a]  List.  \mforall{}R:\mcap{}a:A.  ((B[a]  List)  {}\mrightarrow{}  B[a]  {}\mrightarrow{}  \mBbbB{}).
        (h  \msubseteq{}\msubseteq{}  f  {}\mRightarrow{}  h  \msubseteq{}\msubseteq{}  fpf-union-join(eq;R;f;g))
Date html generated:
2016_05_16-AM-11_14_55
Last ObjectModification:
2016_01_17-PM-03_48_00
Theory : event-ordering
Home
Index