Nuprl Lemma : fpf-domain-join
∀[A:Type]
  ∀f,g:a:A fp-> Top. ∀eq:EqDecider(A). ∀x:A.  ((x ∈ fpf-domain(f ⊕ g)) ⇐⇒ (x ∈ fpf-domain(f)) ∨ (x ∈ fpf-domain(g)))
Proof
Definitions occuring in Statement : 
fpf-join: f ⊕ g, 
fpf-domain: fpf-domain(f), 
fpf: a:A fp-> B[a], 
l_member: (x ∈ l), 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
top: Top, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
or: P ∨ Q, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
rev_implies: P ⇐ Q, 
prop: ℙ, 
or: P ∨ Q, 
guard: {T}
Latex:
\mforall{}[A:Type]
    \mforall{}f,g:a:A  fp->  Top.  \mforall{}eq:EqDecider(A).  \mforall{}x:A.
        ((x  \mmember{}  fpf-domain(f  \moplus{}  g))  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  fpf-domain(f))  \mvee{}  (x  \mmember{}  fpf-domain(g)))
Date html generated:
2016_05_16-AM-11_10_48
Last ObjectModification:
2015_12_29-AM-09_17_53
Theory : event-ordering
Home
Index