Nuprl Lemma : fpf-join-single-property
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[f:a:A fp-> B[a]]. ∀[a:A]. ∀[v:B[a]]. ∀[eq:EqDecider(A)]. ∀[b:A].
  ({(↑b ∈ dom(f)) ∧ (f ⊕ a : v(b) = f(b) ∈ B[b])}) supposing ((↑b ∈ dom(f ⊕ a : v)) and (¬(b = a ∈ A)))
Proof
Definitions occuring in Statement : 
fpf-single: x : v, 
fpf-join: f ⊕ g, 
fpf-ap: f(x), 
fpf-dom: x ∈ dom(f), 
fpf: a:A fp-> B[a], 
deq: EqDecider(T), 
assert: ↑b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
guard: {T}, 
so_apply: x[s], 
not: ¬A, 
and: P ∧ Q, 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
guard: {T}, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
or: P ∨ Q, 
cand: A c∧ B, 
top: Top, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
not: ¬A, 
false: False, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f:a:A  fp->  B[a]].  \mforall{}[a:A].  \mforall{}[v:B[a]].  \mforall{}[eq:EqDecider(A)].  \mforall{}[b:A].
    (\{(\muparrow{}b  \mmember{}  dom(f))  \mwedge{}  (f  \moplus{}  a  :  v(b)  =  f(b))\})  supposing  ((\muparrow{}b  \mmember{}  dom(f  \moplus{}  a  :  v))  and  (\mneg{}(b  =  a)))
Date html generated:
2016_05_16-AM-11_29_46
Last ObjectModification:
2015_12_29-AM-09_25_34
Theory : event-ordering
Home
Index