Nuprl Lemma : fpf-join-sub2
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[eq:EqDecider(A)]. ∀[f1,g,f2:a:A fp-> B[a]].  (f1 ⊕ f2 ⊆ g) supposing (f2 ⊆ g and f1 ⊆ g)
Proof
Definitions occuring in Statement : 
fpf-join: f ⊕ g, 
fpf-sub: f ⊆ g, 
fpf: a:A fp-> B[a], 
deq: EqDecider(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
prop: ℙ, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
fpf-sub: f ⊆ g, 
fpf-compatible: f || g, 
subtype_rel: A ⊆r B, 
top: Top, 
cand: A c∧ B
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[f1,g,f2:a:A  fp->  B[a]].
    (f1  \moplus{}  f2  \msubseteq{}  g)  supposing  (f2  \msubseteq{}  g  and  f1  \msubseteq{}  g)
Date html generated:
2016_05_16-AM-11_12_15
Last ObjectModification:
2015_12_29-AM-09_18_25
Theory : event-ordering
Home
Index