Nuprl Lemma : fpf-restrict-dom
∀[A:Type]. ∀[eq:EqDecider(A)]. ∀[B:A ⟶ Type]. ∀[f:x:A fp-> B[x]]. ∀[P:A ⟶ 𝔹]. ∀[x:A].
  uiff(↑x ∈ dom(fpf-restrict(f;P));{(↑x ∈ dom(f)) ∧ (↑(P x))})
Proof
Definitions occuring in Statement : 
fpf-restrict: fpf-restrict(f;P), 
fpf-dom: x ∈ dom(f), 
fpf: a:A fp-> B[a], 
deq: EqDecider(T), 
assert: ↑b, 
bool: 𝔹, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
guard: {T}, 
so_apply: x[s], 
and: P ∧ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
uiff: uiff(P;Q), 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
uimplies: b supposing a, 
implies: P ⇒ Q, 
guard: {T}, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
prop: ℙ, 
rev_implies: P ⇐ Q, 
top: Top
Latex:
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f:x:A  fp->  B[x]].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[x:A].
    uiff(\muparrow{}x  \mmember{}  dom(fpf-restrict(f;P));\{(\muparrow{}x  \mmember{}  dom(f))  \mwedge{}  (\muparrow{}(P  x))\})
Date html generated:
2016_05_16-AM-11_33_44
Last ObjectModification:
2015_12_29-AM-09_29_16
Theory : event-ordering
Home
Index