Nuprl Lemma : fpf-sub-functionality2
∀[A,A':Type].
  ∀[B:A ⟶ Type]. ∀[C:A' ⟶ Type]. ∀[eq:EqDecider(A)]. ∀[eq':EqDecider(A')]. ∀[f,g:a:A fp-> B[a]].
    (f ⊆ g) supposing (f ⊆ g and (∀a:A. (B[a] ⊆r C[a]))) 
  supposing strong-subtype(A;A')
Proof
Definitions occuring in Statement : 
fpf-sub: f ⊆ g, 
fpf: a:A fp-> B[a], 
deq: EqDecider(T), 
strong-subtype: strong-subtype(A;B), 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
fpf-sub: f ⊆ g, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
top: Top, 
prop: ℙ, 
strong-subtype: strong-subtype(A;B), 
cand: A c∧ B, 
guard: {T}, 
fpf-ap: f(x)
Latex:
\mforall{}[A,A':Type].
    \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[C:A'  {}\mrightarrow{}  Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[eq':EqDecider(A')].  \mforall{}[f,g:a:A  fp->  B[a]].
        (f  \msubseteq{}  g)  supposing  (f  \msubseteq{}  g  and  (\mforall{}a:A.  (B[a]  \msubseteq{}r  C[a]))) 
    supposing  strong-subtype(A;A')
Date html generated:
2016_05_16-AM-11_06_51
Last ObjectModification:
2015_12_29-AM-09_14_43
Theory : event-ordering
Home
Index