Nuprl Lemma : fpf-vals-singleton
∀[A:Type]. ∀[eq:EqDecider(A)]. ∀[B:A ⟶ Type]. ∀[P:A ⟶ 𝔹]. ∀[f:x:A fp-> B[x]]. ∀[a:A].
  (fpf-vals(eq;P;f) = [<a, f(a)>] ∈ ((x:A × B[x]) List)) supposing ((∀b:A. (↑(P b) ⇐⇒ b = a ∈ A)) and (↑a ∈ dom(f)))
Proof
Definitions occuring in Statement : 
fpf-vals: fpf-vals(eq;P;f), 
fpf-ap: f(x), 
fpf-dom: x ∈ dom(f), 
fpf: a:A fp-> B[a], 
cons: [a / b], 
nil: [], 
list: T List, 
deq: EqDecider(T), 
assert: ↑b, 
bool: 𝔹, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
pair: <a, b>, 
product: x:A × B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
fpf-vals: fpf-vals(eq;P;f), 
let: let, 
fpf: a:A fp-> B[a], 
pi1: fst(t), 
pi2: snd(t), 
all: ∀x:A. B[x], 
member: t ∈ T, 
top: Top, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
prop: ℙ, 
and: P ∧ Q, 
cand: A c∧ B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
fpf-dom: x ∈ dom(f), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
not: ¬A, 
false: False, 
uiff: uiff(P;Q), 
guard: {T}, 
or: P ∨ Q, 
sq_type: SQType(T), 
nat: ℕ, 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
cons: [a / b], 
colength: colength(L), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
decidable: Dec(P), 
nil: [], 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b)
Latex:
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:x:A  fp->  B[x]].  \mforall{}[a:A].
    (fpf-vals(eq;P;f)  =  [<a,  f(a)>])  supposing  ((\mforall{}b:A.  (\muparrow{}(P  b)  \mLeftarrow{}{}\mRightarrow{}  b  =  a))  and  (\muparrow{}a  \mmember{}  dom(f)))
Date html generated:
2016_05_16-AM-11_19_00
Last ObjectModification:
2016_01_17-PM-03_50_24
Theory : event-ordering
Home
Index