Nuprl Lemma : free-from-atom-fpf-ap
∀[a:Atom1]. ∀[A:Type]. ∀[eq:EqDecider(A)]. ∀[B:A ⟶ 𝕌']. ∀[f:x:A fp-> B[x]].
  ∀[x:A]. (a#f(x):B[x]) supposing ((↑x ∈ dom(f)) and a#x:A) supposing a#f:x:A fp-> B[x]
Proof
Definitions occuring in Statement : 
fpf-ap: f(x), 
fpf-dom: x ∈ dom(f), 
fpf: a:A fp-> B[a], 
deq: EqDecider(T), 
free-from-atom: a#x:T, 
atom: Atom$n, 
assert: ↑b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
top: Top, 
prop: ℙ, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
fpf-ap: f(x), 
fpf-domain: fpf-domain(f), 
fpf: a:A fp-> B[a], 
pi2: snd(t), 
pi1: fst(t), 
squash: ↓T, 
true: True
Latex:
\mforall{}[a:Atom1].  \mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  \mBbbU{}'].  \mforall{}[f:x:A  fp->  B[x]].
    \mforall{}[x:A].  (a\#f(x):B[x])  supposing  ((\muparrow{}x  \mmember{}  dom(f))  and  a\#x:A)  supposing  a\#f:x:A  fp->  B[x]
Date html generated:
2016_05_16-AM-11_42_38
Last ObjectModification:
2016_01_17-PM-03_48_51
Theory : event-ordering
Home
Index