Nuprl Lemma : global-class-iff-bounded-local-class
∀[Info:Type]. ∀[A:{A:Type| valueall-type(A)} ]. ∀[X:EClass(A)].
  (GlobalClass(Info;A;X) ⇐⇒ LocalClass(X) ∧ LocBounded(A;X))
Proof
Definitions occuring in Statement : 
global-class: GlobalClass(Info;A;X), 
local-class: LocalClass(X), 
loc-bounded-class: LocBounded(T;X), 
eclass: EClass(A[eo; e]), 
valueall-type: valueall-type(T), 
uall: ∀[x:A]. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
set: {x:A| B[x]} , 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
so_lambda: λ2x y.t[x; y], 
subtype_rel: A ⊆r B, 
so_apply: x[s1;s2], 
local-class: LocalClass(X), 
global-class: GlobalClass(Info;A;X), 
sq_exists: ∃x:{A| B[x]}, 
all: ∀x:A. B[x], 
pi1: fst(t), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
top: Top, 
pi2: snd(t), 
sq_stable: SqStable(P), 
squash: ↓T, 
true: True, 
guard: {T}, 
class-ap: X(e), 
hdf-parallel-bag: hdf-parallel-bag(Xs), 
mk-hdf: mk-hdf(s,m.G[s; m];st.H[st];s0), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
compose: f o g, 
rev_uimplies: rev_uimplies(P;Q), 
bag-mapfilter: bag-mapfilter(f;P;bs), 
cand: A c∧ B, 
has-value: (a)↓, 
callbyvalueall: callbyvalueall, 
has-valueall: has-valueall(a), 
bag-combine: ⋃x∈bs.f[x], 
not: ¬A, 
loc-bounded-class: LocBounded(T;X), 
class-loc-bound: class-loc-bound{i:l}(Info;T;X;L), 
classrel: v ∈ X(e), 
bag-member: x ↓∈ bs, 
eclass: EClass(A[eo; e]), 
decidable: Dec(P), 
nat: ℕ, 
single-bag: {x}, 
le: A ≤ B, 
eq_id: a = b, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
deq: EqDecider(T)
Latex:
\mforall{}[Info:Type].  \mforall{}[A:\{A:Type|  valueall-type(A)\}  ].  \mforall{}[X:EClass(A)].
    (GlobalClass(Info;A;X)  \mLeftarrow{}{}\mRightarrow{}  LocalClass(X)  \mwedge{}  LocBounded(A;X))
Date html generated:
2016_05_16-PM-02_07_27
Last ObjectModification:
2016_01_17-PM-07_50_55
Theory : event-ordering
Home
Index