Nuprl Lemma : global-order-preserving_wf
∀[Info:Type]. ∀[es:EO+(Info)]. ∀[X:EClass(Top)]. ∀[f:E(X) ⟶ E(X)].  (global-order-preserving(es;X;f) ∈ ℙ)
Proof
Definitions occuring in Statement : 
global-order-preserving: global-order-preserving(es;X;f), 
es-E-interface: E(X), 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
uall: ∀[x:A]. B[x], 
top: Top, 
prop: ℙ, 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
global-order-preserving: global-order-preserving(es;X;f), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
es-E-interface: E(X), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
and: P ∧ Q, 
so_apply: x[s], 
all: ∀x:A. B[x], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2]
Latex:
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(Top)].  \mforall{}[f:E(X)  {}\mrightarrow{}  E(X)].
    (global-order-preserving(es;X;f)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_16-PM-10_15_33
Last ObjectModification:
2015_12_29-AM-11_17_19
Theory : event-ordering
Home
Index