Nuprl Lemma : iterate-process_wf
∀[M,E:Type ⟶ Type].
  (∀P:process(P.M[P];P.E[P]). ∀inputs:M[process(P.M[P];P.E[P])] List.  (P*(inputs) ∈ process(P.M[P];P.E[P]))) supposing 
     (Continuous+(P.E[P]) and 
     Continuous+(P.M[P]))
Proof
Definitions occuring in Statement : 
iterate-process: P*(inputs), 
process: process(P.M[P];P.E[P]), 
list: T List, 
strong-type-continuous: Continuous+(T.F[T]), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
iterate-process: P*(inputs), 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
so_lambda: λ2x y.t[x; y], 
subtype_rel: A ⊆r B, 
implies: P ⇒ Q, 
top: Top, 
so_apply: x[s1;s2], 
prop: ℙ
Latex:
\mforall{}[M,E:Type  {}\mrightarrow{}  Type].
    (\mforall{}P:process(P.M[P];P.E[P]).  \mforall{}inputs:M[process(P.M[P];P.E[P])]  List.
          (P*(inputs)  \mmember{}  process(P.M[P];P.E[P])))  supposing 
          (Continuous+(P.E[P])  and 
          Continuous+(P.M[P]))
Date html generated:
2016_05_16-AM-11_44_14
Last ObjectModification:
2015_12_29-PM-01_15_20
Theory : event-ordering
Home
Index