Nuprl Lemma : loop-class-memory-is-prior-loop-class-state
∀[Info,B:Type]. ∀[X:EClass(B ⟶ B)]. ∀[init:Id ⟶ bag(B)].
  (loop-class-memory(X;init) = Prior(loop-class-state(X;init))?init ∈ EClass(B))
Proof
Definitions occuring in Statement : 
loop-class-memory: loop-class-memory(X;init), 
loop-class-state: loop-class-state(X;init), 
primed-class-opt: Prior(X)?b, 
eclass: EClass(A[eo; e]), 
Id: Id, 
uall: ∀[x:A]. B[x], 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T, 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
and: P ∧ Q, 
cand: A c∧ B, 
exists: ∃x:A. B[x], 
so_lambda: λ2x y.t[x; y], 
subtype_rel: A ⊆r B, 
so_apply: x[s1;s2], 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
strongwellfounded: SWellFounded(R[x; y]), 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
top: Top, 
prop: ℙ, 
guard: {T}, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
less_than': less_than'(a;b), 
decidable: Dec(P), 
or: P ∨ Q, 
less_than: a < b, 
squash: ↓T, 
loop-class-memory: loop-class-memory(X;init), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
loop-class-state: loop-class-state(X;init), 
eclass-cond: eclass-cond(X;Y), 
eclass3: eclass3(X;Y), 
class-ap: X(e), 
member-eclass: e ∈b X, 
eclass: EClass(A[eo; e]), 
lt_int: i <z j
Latex:
\mforall{}[Info,B:Type].  \mforall{}[X:EClass(B  {}\mrightarrow{}  B)].  \mforall{}[init:Id  {}\mrightarrow{}  bag(B)].
    (loop-class-memory(X;init)  =  Prior(loop-class-state(X;init))?init)
Date html generated:
2016_05_16-PM-11_41_29
Last ObjectModification:
2016_01_17-PM-07_07_47
Theory : event-ordering
Home
Index