Nuprl Lemma : loop-class-memory-single-val
∀[Info,B:Type]. ∀[init:Id ⟶ bag(B)]. ∀[X:EClass(B ⟶ B)]. ∀[es:EO+(Info)].
  (single-valued-classrel(es;loop-class-memory(X;init);B)) supposing 
     ((∀l:Id. single-valued-bag(init l;B)) and 
     single-valued-classrel(es;X;B ⟶ B))
Proof
Definitions occuring in Statement : 
loop-class-memory: loop-class-memory(X;init), 
single-valued-classrel: single-valued-classrel(es;X;T), 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
Id: Id, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type, 
single-valued-bag: single-valued-bag(b;T), 
bag: bag(T)
Definitions unfolded in proof : 
single-valued-classrel: single-valued-classrel(es;X;T), 
all: ∀x:A. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
strongwellfounded: SWellFounded(R[x; y]), 
exists: ∃x:A. B[x], 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
guard: {T}, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
less_than': less_than'(a;b), 
decidable: Dec(P), 
or: P ∨ Q, 
less_than: a < b, 
squash: ↓T, 
uiff: uiff(P;Q), 
sq_type: SQType(T), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
bfalse: ff, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
single-valued-bag: single-valued-bag(b;T)
Latex:
\mforall{}[Info,B:Type].  \mforall{}[init:Id  {}\mrightarrow{}  bag(B)].  \mforall{}[X:EClass(B  {}\mrightarrow{}  B)].  \mforall{}[es:EO+(Info)].
    (single-valued-classrel(es;loop-class-memory(X;init);B))  supposing 
          ((\mforall{}l:Id.  single-valued-bag(init  l;B))  and 
          single-valued-classrel(es;X;B  {}\mrightarrow{}  B))
Date html generated:
2016_05_16-PM-11_40_59
Last ObjectModification:
2016_01_17-PM-07_03_49
Theory : event-ordering
Home
Index