Nuprl Lemma : loop-class-memory-size-zero
∀[Info,B:Type]. ∀[X:EClass(B ⟶ B)]. ∀[init:Id ⟶ bag(B)]. ∀[es:EO+(Info)]. ∀[e:E].
  uiff(#(init loc(e)) = 0 ∈ ℤ;#(loop-class-memory(X;init)(e)) = 0 ∈ ℤ)
Proof
Definitions occuring in Statement : 
loop-class-memory: loop-class-memory(X;init), 
class-ap: X(e), 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
es-loc: loc(e), 
es-E: E, 
Id: Id, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n, 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T, 
bag-size: #(bs), 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
decidable: Dec(P), 
or: P ∨ Q, 
prop: ℙ, 
nat: ℕ, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
guard: {T}, 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top
Latex:
\mforall{}[Info,B:Type].  \mforall{}[X:EClass(B  {}\mrightarrow{}  B)].  \mforall{}[init:Id  {}\mrightarrow{}  bag(B)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].
    uiff(\#(init  loc(e))  =  0;\#(loop-class-memory(X;init)(e))  =  0)
Date html generated:
2016_05_16-PM-11_38_19
Last ObjectModification:
2016_01_17-PM-07_07_13
Theory : event-ordering
Home
Index