Nuprl Lemma : loop-class-state-exists
∀[Info,B:Type]. ∀[X:EClass(B ⟶ B)]. ∀[init:Id ⟶ bag(B)]. ∀[es:EO+(Info)]. ∀[e:E].
  uiff(0 < #(init loc(e));↓∃v:B. v ∈ loop-class-state(X;init)(e))
Proof
Definitions occuring in Statement : 
loop-class-state: loop-class-state(X;init), 
classrel: v ∈ X(e), 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
es-loc: loc(e), 
es-E: E, 
Id: Id, 
less_than: a < b, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
exists: ∃x:A. B[x], 
squash: ↓T, 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n, 
universe: Type, 
bag-size: #(bs), 
bag: bag(T)
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
strongwellfounded: SWellFounded(R[x; y]), 
exists: ∃x:A. B[x], 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
guard: {T}, 
uiff: uiff(P;Q), 
squash: ↓T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
less_than': less_than'(a;b), 
decidable: Dec(P), 
or: P ∨ Q, 
less_than: a < b, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
iff: P ⇐⇒ Q, 
loop-class-state: loop-class-state(X;init), 
rev_uimplies: rev_uimplies(P;Q), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
cand: A c∧ B, 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
true: True, 
rev_implies: P ⇐ Q, 
es-p-local-pred: es-p-local-pred(es;P), 
es-locl: (e <loc e'), 
Id: Id
Latex:
\mforall{}[Info,B:Type].  \mforall{}[X:EClass(B  {}\mrightarrow{}  B)].  \mforall{}[init:Id  {}\mrightarrow{}  bag(B)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].
    uiff(0  <  \#(init  loc(e));\mdownarrow{}\mexists{}v:B.  v  \mmember{}  loop-class-state(X;init)(e))
Date html generated:
2016_05_16-PM-11_34_58
Last ObjectModification:
2016_01_17-PM-07_13_35
Theory : event-ordering
Home
Index