Nuprl Lemma : loop-class-state-prior
∀[Info,B:Type]. ∀[X:EClass(B ⟶ B)]. ∀[init:Id ⟶ bag(B)].
  ∀es:EO+(Info). ∀e:E.
    ∀[v:B]
      uiff(v ∈ Prior(loop-class-state(X;init))?init(e);((↑first(e)) ∧ v ↓∈ init loc(e))
      ∨ ((¬↑first(e)) ∧ v ∈ loop-class-state(X;init)(pred(e))))
Proof
Definitions occuring in Statement : 
loop-class-state: loop-class-state(X;init), 
primed-class-opt: Prior(X)?b, 
classrel: v ∈ X(e), 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
es-first: first(e), 
es-pred: pred(e), 
es-loc: loc(e), 
es-E: E, 
Id: Id, 
assert: ↑b, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
not: ¬A, 
or: P ∨ Q, 
and: P ∧ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type, 
bag-member: x ↓∈ bs, 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
decidable: Dec(P), 
or: P ∨ Q, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
classrel: v ∈ X(e), 
bag-member: x ↓∈ bs, 
squash: ↓T, 
cand: A c∧ B, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
prop: ℙ, 
not: ¬A, 
false: False, 
guard: {T}, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
exists: ∃x:A. B[x], 
es-p-local-pred: es-p-local-pred(es;P), 
rev_uimplies: rev_uimplies(P;Q), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
es-locl: (e <loc e'), 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
Id: Id, 
sq_type: SQType(T)
Latex:
\mforall{}[Info,B:Type].  \mforall{}[X:EClass(B  {}\mrightarrow{}  B)].  \mforall{}[init:Id  {}\mrightarrow{}  bag(B)].
    \mforall{}es:EO+(Info).  \mforall{}e:E.
        \mforall{}[v:B]
            uiff(v  \mmember{}  Prior(loop-class-state(X;init))?init(e);((\muparrow{}first(e))  \mwedge{}  v  \mdownarrow{}\mmember{}  init  loc(e))
            \mvee{}  ((\mneg{}\muparrow{}first(e))  \mwedge{}  v  \mmember{}  loop-class-state(X;init)(pred(e))))
Date html generated:
2016_05_16-PM-11_35_14
Last ObjectModification:
2016_01_17-PM-07_09_01
Theory : event-ordering
Home
Index