Nuprl Lemma : lpath-members-connected
∀[p:IdLnk List]. ∀[i:ℕ||p||]. ∀[j:ℕi + 1].  lconnects(l_interval(p;j;i);source(p[j]);source(p[i])) supposing lpath(p)
Proof
Definitions occuring in Statement : 
lconnects: lconnects(p;i;j), 
lpath: lpath(p), 
lsrc: source(l), 
IdLnk: IdLnk, 
l_interval: l_interval(l;j;i), 
select: L[n], 
length: ||as||, 
list: T List, 
int_seg: {i..j-}, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
lconnects: lconnects(p;i;j), 
and: P ∧ Q, 
lpath: lpath(p), 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
int_seg: {i..j-}, 
guard: {T}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
prop: ℙ, 
le: A ≤ B, 
less_than: a < b, 
squash: ↓T, 
uiff: uiff(P;Q), 
cand: A c∧ B, 
true: True, 
subtract: n - m, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
subtype_rel: A ⊆r B, 
sq_type: SQType(T)
Latex:
\mforall{}[p:IdLnk  List].  \mforall{}[i:\mBbbN{}||p||].  \mforall{}[j:\mBbbN{}i  +  1].
    lconnects(l\_interval(p;j;i);source(p[j]);source(p[i]))  supposing  lpath(p)
Date html generated:
2016_05_16-AM-10_56_59
Last ObjectModification:
2016_01_17-PM-03_52_29
Theory : event-ordering
Home
Index