Nuprl Lemma : member-fpf-vals2
∀[A:Type]. ∀[eq:EqDecider(A)]. ∀[B:A ⟶ Type]. ∀[P:A ⟶ 𝔹]. ∀[f:x:A fp-> B[x]]. ∀[x:{a:A| ↑(P a)} ]. ∀[v:B[x]].
  {(↑x ∈ dom(f)) ∧ (v = f(x) ∈ B[x])} supposing (<x, v> ∈ fpf-vals(eq;P;f))
Proof
Definitions occuring in Statement : 
fpf-vals: fpf-vals(eq;P;f), 
fpf-ap: f(x), 
fpf-dom: x ∈ dom(f), 
fpf: a:A fp-> B[a], 
l_member: (x ∈ l), 
deq: EqDecider(T), 
assert: ↑b, 
bool: 𝔹, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
guard: {T}, 
so_apply: x[s], 
and: P ∧ Q, 
set: {x:A| B[x]} , 
apply: f a, 
function: x:A ⟶ B[x], 
pair: <a, b>, 
product: x:A × B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
prop: ℙ, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
top: Top
Latex:
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:x:A  fp->  B[x]].  \mforall{}[x:\{a:A|  \muparrow{}(P  a)\}  ].
\mforall{}[v:B[x]].
    \{(\muparrow{}x  \mmember{}  dom(f))  \mwedge{}  (v  =  f(x))\}  supposing  (<x,  v>  \mmember{}  fpf-vals(eq;P;f))
Date html generated:
2016_05_16-AM-11_18_27
Last ObjectModification:
2015_12_29-AM-09_21_51
Theory : event-ordering
Home
Index