Nuprl Lemma : member-interface-at
∀[Info:Type]. ∀[es:EO+(Info)]. ∀[X:EClass(Top)]. ∀[e:E(X)].  (e ∈ E(X@loc(e)))
Proof
Definitions occuring in Statement : 
es-interface-at: X@i, 
es-E-interface: E(X), 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
es-loc: loc(e), 
uall: ∀[x:A]. B[x], 
top: Top, 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x y.t[x; y], 
subtype_rel: A ⊆r B, 
so_apply: x[s1;s2], 
es-E-interface: E(X), 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
cand: A c∧ B, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
squash: ↓T, 
prop: ℙ
Latex:
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(Top)].  \mforall{}[e:E(X)].    (e  \mmember{}  E(X@loc(e)))
Date html generated:
2016_05_16-PM-10_54_57
Last ObjectModification:
2016_01_17-PM-07_19_07
Theory : event-ordering
Home
Index