Nuprl Lemma : member-votes-from-inning
∀[V:Type]
  ∀A:Id List. ∀L:consensus-rcv(V;A) List. ∀i:ℕ. ∀b:{b:Id| (b ∈ A)} . ∀v:V.
    ((<b, v> ∈ votes-from-inning(i;L)) ⇐⇒ (Vote[b;i;v] ∈ L))
Proof
Definitions occuring in Statement : 
votes-from-inning: votes-from-inning(i;L), 
cs-rcv-vote: Vote[a;i;v], 
consensus-rcv: consensus-rcv(V;A), 
Id: Id, 
l_member: (x ∈ l), 
list: T List, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
set: {x:A| B[x]} , 
pair: <a, b>, 
product: x:A × B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
votes-from-inning: votes-from-inning(i;L), 
member: t ∈ T, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
cand: A c∧ B, 
nat: ℕ, 
l_member: (x ∈ l), 
exists: ∃x:A. B[x], 
rcvd-inning-eq: inning(r) =z i, 
rcv-vote?: rcv-vote?(x), 
uimplies: b supposing a, 
consensus-rcv: consensus-rcv(V;A), 
or: P ∨ Q, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
assert: ↑b, 
true: True, 
bfalse: ff, 
false: False, 
spreadn: spread3, 
rev_implies: P ⇐ Q, 
subtype_rel: A ⊆r B, 
rcvd-vote: rcvd-vote(x), 
outr: outr(x), 
uiff: uiff(P;Q), 
top: Top, 
pi1: fst(t), 
pi2: snd(t), 
cs-rcv-vote: Vote[a;i;v], 
squash: ↓T, 
ge: i ≥ j , 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
rev_uimplies: rev_uimplies(P;Q)
Latex:
\mforall{}[V:Type]
    \mforall{}A:Id  List.  \mforall{}L:consensus-rcv(V;A)  List.  \mforall{}i:\mBbbN{}.  \mforall{}b:\{b:Id|  (b  \mmember{}  A)\}  .  \mforall{}v:V.
        ((<b,  v>  \mmember{}  votes-from-inning(i;L))  \mLeftarrow{}{}\mRightarrow{}  (Vote[b;i;v]  \mmember{}  L))
Date html generated:
2016_05_16-PM-00_35_23
Last ObjectModification:
2016_01_17-PM-03_57_11
Theory : event-ordering
Home
Index