Nuprl Lemma : null-process_wf
∀[M,E:Type ⟶ Type].
  (∀[n:⋂T:Type. E[T]]. (null-process(n) ∈ process(P.M[P];P.E[P]))) supposing 
     (Continuous+(T.E[T]) and 
     Continuous+(T.M[T]))
Proof
Definitions occuring in Statement : 
null-process: null-process(n), 
process: process(P.M[P];P.E[P]), 
strong-type-continuous: Continuous+(T.F[T]), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
member: t ∈ T, 
isect: ⋂x:A. B[x], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
null-process: null-process(n), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
unit: Unit, 
so_lambda: λ2x y.t[x; y], 
top: Top, 
so_apply: x[s1;s2], 
prop: ℙ
Latex:
\mforall{}[M,E:Type  {}\mrightarrow{}  Type].
    (\mforall{}[n:\mcap{}T:Type.  E[T]].  (null-process(n)  \mmember{}  process(P.M[P];P.E[P])))  supposing 
          (Continuous+(T.E[T])  and 
          Continuous+(T.M[T]))
Date html generated:
2016_05_16-AM-11_44_00
Last ObjectModification:
2015_12_29-AM-09_36_13
Theory : event-ordering
Home
Index