Nuprl Lemma : outl-or-class
∀[Info,A,B:Type]. ∀[X:EClass(A)]. ∀[Y:EClass(B)].  (outl-class(or-class(X;Y)) = X ∈ EClass(A))
Proof
Definitions occuring in Statement : 
or-class: or-class(X;Y), 
outl-class: outl-class(X), 
eclass: EClass(A[eo; e]), 
uall: ∀[x:A]. B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x y.t[x; y], 
subtype_rel: A ⊆r B, 
so_apply: x[s1;s2], 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
top: Top, 
or-class: or-class(X;Y), 
outl-class: outl-class(X), 
inr-class: inr-class(X), 
inl-class: inl-class(X), 
parallel-class: X || Y, 
eclass-compose1: f o X, 
eclass-compose2: eclass-compose2(f;X;Y), 
eclass: EClass(A[eo; e]), 
implies: P ⇒ Q, 
bag-mapfilter: bag-mapfilter(f;P;bs), 
bag-merge: bag-merge(as;bs), 
bag-separate: bag-separate(bs), 
pi1: fst(t)
Latex:
\mforall{}[Info,A,B:Type].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(B)].    (outl-class(or-class(X;Y))  =  X)
Date html generated:
2016_05_16-PM-10_39_13
Last ObjectModification:
2015_12_29-AM-10_55_36
Theory : event-ordering
Home
Index