Nuprl Lemma : parallel-class-loc-bounded
∀[T,Info:Type]. ∀[X,Y:EClass(T)].  (LocBounded(T;X) ⇒ LocBounded(T;Y) ⇒ LocBounded(T;X || Y))
Proof
Definitions occuring in Statement : 
parallel-class: X || Y, 
loc-bounded-class: LocBounded(T;X), 
eclass: EClass(A[eo; e]), 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
loc-bounded-class: LocBounded(T;X), 
exists: ∃x:A. B[x], 
class-loc-bound: class-loc-bound{i:l}(Info;T;X;L), 
member: t ∈ T, 
all: ∀x:A. B[x], 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
sq_or: a ↓∨ b, 
squash: ↓T, 
subtype_rel: A ⊆r B, 
sq_stable: SqStable(P), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
or: P ∨ Q, 
prop: ℙ, 
guard: {T}, 
bag-member: x ↓∈ bs, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2]
Latex:
\mforall{}[T,Info:Type].  \mforall{}[X,Y:EClass(T)].    (LocBounded(T;X)  {}\mRightarrow{}  LocBounded(T;Y)  {}\mRightarrow{}  LocBounded(T;X  ||  Y))
Date html generated:
2016_05_16-PM-02_30_54
Last ObjectModification:
2016_01_17-PM-07_31_37
Theory : event-ordering
Home
Index