Nuprl Lemma : primed-class-equal
∀[Info,T:Type]. ∀[X,Y:EClass(T)]. ∀[es:EO+(Info)]. ∀[e:E].
  (Prior(X) es e) = (Prior(Y) es e) ∈ bag(T) supposing ∀e':E. ((e' <loc e) ⇒ ((X es e') = (Y es e') ∈ bag(T)))
Proof
Definitions occuring in Statement : 
primed-class: Prior(X), 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
es-locl: (e <loc e'), 
es-E: E, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
universe: Type, 
equal: s = t ∈ T, 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
strongwellfounded: SWellFounded(R[x; y]), 
exists: ∃x:A. B[x], 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
guard: {T}, 
so_lambda: λ2x.t[x], 
eclass: EClass(A[eo; e]), 
so_apply: x[s], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
less_than': less_than'(a;b), 
decidable: Dec(P), 
or: P ∨ Q, 
less_than: a < b, 
squash: ↓T, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
true: True
Latex:
\mforall{}[Info,T:Type].  \mforall{}[X,Y:EClass(T)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].
    (Prior(X)  es  e)  =  (Prior(Y)  es  e)  supposing  \mforall{}e':E.  ((e'  <loc  e)  {}\mRightarrow{}  ((X  es  e')  =  (Y  es  e')))
Date html generated:
2016_05_17-AM-06_32_18
Last ObjectModification:
2016_01_17-PM-06_37_14
Theory : event-ordering
Home
Index