Nuprl Lemma : primed-class-opt-exists
∀[Info,B:Type]. ∀[es:EO+(Info)]. ∀[X:EClass(B)]. ∀[init:Id ⟶ bag(B)]. ∀[e:E].
  ((↓∃x:B. x ↓∈ init loc(e)) ⇒ (↓∃b:B. b ∈ Prior(X)?init(e)))
Proof
Definitions occuring in Statement : 
primed-class-opt: Prior(X)?b, 
classrel: v ∈ X(e), 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
es-loc: loc(e), 
es-E: E, 
Id: Id, 
uall: ∀[x:A]. B[x], 
exists: ∃x:A. B[x], 
squash: ↓T, 
implies: P ⇒ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type, 
bag-member: x ↓∈ bs, 
bag: bag(T)
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
strongwellfounded: SWellFounded(R[x; y]), 
exists: ∃x:A. B[x], 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
guard: {T}, 
squash: ↓T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
less_than': less_than'(a;b), 
decidable: Dec(P), 
or: P ∨ Q, 
less_than: a < b, 
classrel: v ∈ X(e), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
eclass: EClass(A[eo; e]), 
iff: P ⇐⇒ Q, 
es-E: E, 
es-base-E: es-base-E(es), 
true: True, 
rev_implies: P ⇐ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff
Latex:
\mforall{}[Info,B:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(B)].  \mforall{}[init:Id  {}\mrightarrow{}  bag(B)].  \mforall{}[e:E].
    ((\mdownarrow{}\mexists{}x:B.  x  \mdownarrow{}\mmember{}  init  loc(e))  {}\mRightarrow{}  (\mdownarrow{}\mexists{}b:B.  b  \mmember{}  Prior(X)?init(e)))
Date html generated:
2016_05_17-AM-06_30_57
Last ObjectModification:
2016_01_17-PM-06_39_15
Theory : event-ordering
Home
Index