Nuprl Lemma : prior-as-rec-bind-class-in-property
∀[Info,A:Type]. ∀[X:EClass(A)]. ∀[x,a:bag(A) + (bag(A)?)]. ∀[es:EO+(Info)]. ∀[e:E].
  ∀[w:bag(A) + (bag(A)?)]. (¬w ∈ prior-as-rec-bind-class-in(X;a)(e)) supposing a ∈ prior-as-rec-bind-class-in(X;x)(e)
Proof
Definitions occuring in Statement : 
prior-as-rec-bind-class-in: prior-as-rec-bind-class-in(X;i), 
classrel: v ∈ X(e), 
eclass: EClass(A[eo; e]), 
eo-forward: eo.e, 
event-ordering+: EO+(Info), 
es-E: E, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
unit: Unit, 
union: left + right, 
universe: Type, 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
prop: ℙ, 
not: ¬A, 
prior-as-rec-bind-class-in: prior-as-rec-bind-class-in(X;i), 
uiff: uiff(P;Q), 
and: P ∧ Q, 
false: False, 
disjoint-union-comb: X (+) Y, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
top: Top, 
sq_or: a ↓∨ b, 
squash: ↓T, 
or: P ∨ Q, 
simple-comb-1: F|X|, 
simple-comb: simple-comb(F;Xs), 
select: L[n], 
cons: [a / b], 
classrel: v ∈ X(e), 
lifting-1: lifting-1(f), 
lifting1: lifting1(f;b), 
lifting-gen-rev: lifting-gen-rev(n;f;bags), 
lifting-gen-list-rev: lifting-gen-list-rev(n;bags), 
eq_int: (i =z j), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
btrue: tt, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
exists: ∃x:A. B[x], 
null-class: Null, 
eclass: EClass(A[eo; e]), 
parallel-class: X || Y, 
eclass-compose2: eclass-compose2(f;X;Y), 
iff: P ⇐⇒ Q
Latex:
\mforall{}[Info,A:Type].  \mforall{}[X:EClass(A)].  \mforall{}[x,a:bag(A)  +  (bag(A)?)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].
    \mforall{}[w:bag(A)  +  (bag(A)?)].  (\mneg{}w  \mmember{}  prior-as-rec-bind-class-in(X;a)(e)) 
    supposing  a  \mmember{}  prior-as-rec-bind-class-in(X;x)(e)
Date html generated:
2016_05_17-AM-00_29_56
Last ObjectModification:
2015_12_29-AM-00_48_23
Theory : event-ordering
Home
Index