Nuprl Lemma : prior-or-latest
∀[Info,A,B:Type]. ∀[X:EClass(A)]. ∀[Y:EClass(B)].
  ((X |- Y))' = ((X)' | (Y)') ∈ EClass(one_or_both(A;B)) supposing Singlevalued(X) ∧ Singlevalued(Y)
Proof
Definitions occuring in Statement : 
es-or-latest: (X |- Y), 
es-prior-val: (X)', 
es-interface-or: (X | Y), 
sv-class: Singlevalued(X), 
eclass: EClass(A[eo; e]), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
and: P ∧ Q, 
universe: Type, 
equal: s = t ∈ T, 
one_or_both: one_or_both(A;B)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
and: P ∧ Q, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
guard: {T}, 
rev_implies: P ⇐ Q, 
cand: A c∧ B, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
top: Top, 
sv-class: Singlevalued(X), 
es-interface-or: (X | Y), 
eclass-compose2: eclass-compose2(f;X;Y), 
oob-apply: oob-apply(xs;ys), 
eclass-val: X(e), 
in-eclass: e ∈b X, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
es-prior-val: (X)', 
eclass: EClass(A[eo; e]), 
nat: ℕ, 
squash: ↓T, 
true: True, 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla)
Latex:
\mforall{}[Info,A,B:Type].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(B)].
    ((X  |\msupminus{}  Y))'  =  ((X)'  |  (Y)')  supposing  Singlevalued(X)  \mwedge{}  Singlevalued(Y)
Date html generated:
2016_05_17-AM-08_14_19
Last ObjectModification:
2016_01_17-PM-02_51_53
Theory : event-ordering
Home
Index