Nuprl Lemma : process-subtype
∀[M,E:Type ⟶ Type].
  (process(P.M[P];P.E[P]) ⊆r (M[process(P.M[P];P.E[P])]
     ⟶ (process(P.M[P];P.E[P]) × E[process(P.M[P];P.E[P])]))) supposing 
     (Continuous+(P.E[P]) and 
     Continuous+(P.M[P]))
Proof
Definitions occuring in Statement : 
process: process(P.M[P];P.E[P]), 
strong-type-continuous: Continuous+(T.F[T]), 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
product: x:A × B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
process: process(P.M[P];P.E[P]), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
strong-type-continuous: Continuous+(T.F[T]), 
type-continuous: Continuous(T.F[T]), 
guard: {T}, 
subtype_rel: A ⊆r B, 
prop: ℙ
Latex:
\mforall{}[M,E:Type  {}\mrightarrow{}  Type].
    (process(P.M[P];P.E[P])  \msubseteq{}r  (M[process(P.M[P];P.E[P])]
          {}\mrightarrow{}  (process(P.M[P];P.E[P])  \mtimes{}  E[process(P.M[P];P.E[P])])))  supposing 
          (Continuous+(P.E[P])  and 
          Continuous+(P.M[P]))
Date html generated:
2016_05_16-AM-11_42_55
Last ObjectModification:
2015_12_29-AM-09_35_33
Theory : event-ordering
Home
Index