Nuprl Lemma : process-valueall-type
∀[M,E:Type ⟶ Type].  valueall-type(process(P.M[P];P.E[P])) supposing M[Top]
Proof
Definitions occuring in Statement : 
process: process(P.M[P];P.E[P]), 
valueall-type: valueall-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
top: Top, 
so_apply: x[s], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
exists: ∃x:A. B[x], 
squash: ↓T, 
valueall-type: valueall-type(T), 
has-value: (a)↓, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
process: process(P.M[P];P.E[P]), 
corec: corec(T.F[T]), 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
guard: {T}, 
all: ∀x:A. B[x], 
top: Top
Latex:
\mforall{}[M,E:Type  {}\mrightarrow{}  Type].    valueall-type(process(P.M[P];P.E[P]))  supposing  M[Top]
Date html generated:
2016_05_16-AM-11_43_03
Last ObjectModification:
2016_01_17-PM-03_49_05
Theory : event-ordering
Home
Index