Nuprl Lemma : rec-bind-class_wf
∀[Info,A,B:Type]. ∀[X:A ⟶ EClass(B)]. ∀[Y:A ⟶ EClass(A)].
  rec-bind-class(X;Y) ∈ A ⟶ EClass(B) supposing not-self-starting{i:l}(Info;A;Y)
Proof
Definitions occuring in Statement : 
rec-bind-class: rec-bind-class(X;Y), 
not-self-starting: not-self-starting{i:l}(Info;A;Y), 
eclass: EClass(A[eo; e]), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
not-self-starting: not-self-starting{i:l}(Info;A;Y), 
all: ∀x:A. B[x], 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
decidable: Dec(P), 
or: P ∨ Q, 
le: A ≤ B, 
less_than': less_than'(a;b), 
guard: {T}, 
uiff: uiff(P;Q), 
eclass: EClass(A[eo; e]), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
rec-bind-class: rec-bind-class(X;Y), 
mbind-class: X >>= Y, 
parallel-class: X || Y, 
bind-class: X >x> Y[x], 
eclass-compose2: eclass-compose2(f;X;Y), 
so_lambda: λ2x.t[x], 
classrel: v ∈ X(e), 
so_apply: x[s], 
squash: ↓T, 
true: True, 
iff: P ⇐⇒ Q, 
sq_stable: SqStable(P), 
es-le: e ≤loc e' , 
rev_implies: P ⇐ Q, 
cand: A c∧ B, 
less_than: a < b
Latex:
\mforall{}[Info,A,B:Type].  \mforall{}[X:A  {}\mrightarrow{}  EClass(B)].  \mforall{}[Y:A  {}\mrightarrow{}  EClass(A)].
    rec-bind-class(X;Y)  \mmember{}  A  {}\mrightarrow{}  EClass(B)  supposing  not-self-starting\{i:l\}(Info;A;Y)
Date html generated:
2016_05_17-AM-00_28_37
Last ObjectModification:
2016_01_17-PM-07_04_53
Theory : event-ordering
Home
Index