Nuprl Lemma : rec-comb_wf2
∀[Info:Type]. ∀[n,m:ℕ]. ∀[A:{m..n-} ⟶ Type]. ∀[X:i:{m..n-} ⟶ EClass(A i)]. ∀[T:Type]. ∀[f:Id
                                                                                            ⟶ (i:{m..n-} ⟶ bag(A i))
                                                                                            ⟶ bag(T)
                                                                                            ⟶ bag(T)].
∀[init:Id ⟶ bag(T)].
  (rec-comb(X;f;init) ∈ EClass(T))
Proof
Definitions occuring in Statement : 
rec-comb: rec-comb(X;f;init), 
eclass: EClass(A[eo; e]), 
Id: Id, 
int_seg: {i..j-}, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type, 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
eclass: EClass(A[eo; e]), 
member: t ∈ T, 
nat: ℕ, 
so_lambda: λ2x y.t[x; y], 
subtype_rel: A ⊆r B, 
so_apply: x[s1;s2], 
top: Top, 
all: ∀x:A. B[x], 
strongwellfounded: SWellFounded(R[x; y]), 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
and: P ∧ Q, 
prop: ℙ, 
guard: {T}, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
less_than': less_than'(a;b), 
decidable: Dec(P), 
or: P ∨ Q, 
less_than: a < b, 
squash: ↓T, 
rec-comb: rec-comb(X;f;init), 
primed-class-opt: Prior(X)?b, 
sq_exists: ∃x:{A| B[x]}
Latex:
\mforall{}[Info:Type].  \mforall{}[n,m:\mBbbN{}].  \mforall{}[A:\{m..n\msupminus{}\}  {}\mrightarrow{}  Type].  \mforall{}[X:i:\{m..n\msupminus{}\}  {}\mrightarrow{}  EClass(A  i)].  \mforall{}[T:Type].
\mforall{}[f:Id  {}\mrightarrow{}  (i:\{m..n\msupminus{}\}  {}\mrightarrow{}  bag(A  i))  {}\mrightarrow{}  bag(T)  {}\mrightarrow{}  bag(T)].  \mforall{}[init:Id  {}\mrightarrow{}  bag(T)].
    (rec-comb(X;f;init)  \mmember{}  EClass(T))
Date html generated:
2016_05_17-AM-00_00_40
Last ObjectModification:
2016_01_17-PM-07_49_50
Theory : event-ordering
Home
Index