Nuprl Lemma : recprocess_wf
∀[S,M,E:Type ⟶ Type].
  (∀[s0:S[process(P.M[P];P.E[P])]]. ∀[next:⋂T:{T:Type| process(P.M[P];P.E[P]) ⊆r T} 
                                             (S[M[T] ⟶ (T × E[T])] ⟶ M[T] ⟶ (S[T] × E[T]))]. ∀[ext:⋂T:Type
                                                                                                        (E[T]
                                                                                                        ⟶ M[T]
                                                                                                        ⟶ T
                                                                                                        ⟶ E[T])].
     (recprocess(s0;s,m.next[s;m];e,m,p.ext[e;m;p]) ∈ process(P.M[P];P.E[P]))) supposing 
     (Continuous+(T.E[T]) and 
     Continuous+(T.M[T]) and 
     Continuous+(T.S[T]))
Proof
Definitions occuring in Statement : 
recprocess: recprocess(s0;s,m.next[s; m];e,m,p.ext[e; m; p]), 
process: process(P.M[P];P.E[P]), 
strong-type-continuous: Continuous+(T.F[T]), 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
so_apply: x[s1;s2;s3], 
so_apply: x[s1;s2], 
so_apply: x[s], 
member: t ∈ T, 
set: {x:A| B[x]} , 
isect: ⋂x:A. B[x], 
function: x:A ⟶ B[x], 
product: x:A × B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
recprocess: recprocess(s0;s,m.next[s; m];e,m,p.ext[e; m; p]), 
process: process(P.M[P];P.E[P]), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
isect2: T1 ⋂ T2, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
top: Top, 
bfalse: ff, 
so_apply: x[s1;s2], 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
so_apply: x[s1;s2;s3], 
prop: ℙ
Latex:
\mforall{}[S,M,E:Type  {}\mrightarrow{}  Type].
    (\mforall{}[s0:S[process(P.M[P];P.E[P])]].  \mforall{}[next:\mcap{}T:\{T:Type|  process(P.M[P];P.E[P])  \msubseteq{}r  T\} 
                                                                                          (S[M[T]  {}\mrightarrow{}  (T  \mtimes{}  E[T])]  {}\mrightarrow{}  M[T]  {}\mrightarrow{}  (S[T]  \mtimes{}  E[T]))].
      \mforall{}[ext:\mcap{}T:Type.  (E[T]  {}\mrightarrow{}  M[T]  {}\mrightarrow{}  T  {}\mrightarrow{}  E[T])].
          (recprocess(s0;s,m.next[s;m];e,m,p.ext[e;m;p])  \mmember{}  process(P.M[P];P.E[P])))  supposing 
          (Continuous+(T.E[T])  and 
          Continuous+(T.M[T])  and 
          Continuous+(T.S[T]))
Date html generated:
2016_05_16-AM-11_43_46
Last ObjectModification:
2015_12_29-AM-09_36_35
Theory : event-ordering
Home
Index