Nuprl Lemma : return-class-val
∀[Info:Type]. ∀[x:Top]. ∀[es:EO+(Info)]. ∀[e:E].  return-class(x)(e) ~ x supposing ↑e ∈b return-class(x)
Proof
Definitions occuring in Statement : 
return-class: return-class(x), 
eclass-val: X(e), 
in-eclass: e ∈b X, 
event-ordering+: EO+(Info), 
es-E: E, 
assert: ↑b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
top: Top, 
universe: Type, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
return-class: return-class(x), 
eclass-val: X(e), 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
ifthenelse: if b then t else f fi , 
top: Top, 
bfalse: ff, 
prop: ℙ, 
not: ¬A, 
false: False
Latex:
\mforall{}[Info:Type].  \mforall{}[x:Top].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].
    return-class(x)(e)  \msim{}  x  supposing  \muparrow{}e  \mmember{}\msubb{}  return-class(x)
Date html generated:
2016_05_16-PM-02_25_23
Last ObjectModification:
2015_12_29-AM-11_42_14
Theory : event-ordering
Home
Index