Nuprl Lemma : single-valued-class-implies-hdf
∀[Info,A:Type].
  ∀X:EClass(A). ∀pr:LocalClass(X).
    (single-valued-classrel-all{i:l}(Info;A;X) ⇒ (∀i:Id. hdf-single-valued(pr i;Info;A)))
Proof
Definitions occuring in Statement : 
local-class: LocalClass(X), 
single-valued-classrel-all: single-valued-classrel-all{i:l}(Info;T;X), 
eclass: EClass(A[eo; e]), 
hdf-single-valued: hdf-single-valued(X;A;B), 
Id: Id, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
hdf-single-valued: hdf-single-valued(X;A;B), 
local-class: LocalClass(X), 
sq_exists: ∃x:{A| B[x]}, 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
ext-eq: A ≡ B, 
and: P ∧ Q, 
prop: ℙ, 
hdf-run: hdf-run(P), 
true: True, 
unit: Unit, 
it: ⋅, 
hdf-halt: hdf-halt(), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
single-valued-bag: single-valued-bag(b;T), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
sq_stable: SqStable(P), 
squash: ↓T, 
uimplies: b supposing a, 
top: Top, 
pi1: fst(t), 
pi2: snd(t), 
hdf-ap: X(a), 
nat_plus: ℕ+, 
less_than: a < b, 
less_than': less_than'(a;b), 
guard: {T}, 
decidable: Dec(P), 
or: P ∨ Q, 
false: False, 
uiff: uiff(P;Q), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
listp: A List+, 
es-le-before: ≤loc(e), 
ge: i ≥ j , 
Id: Id, 
sq_type: SQType(T), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
class-ap: X(e)
Latex:
\mforall{}[Info,A:Type].
    \mforall{}X:EClass(A).  \mforall{}pr:LocalClass(X).
        (single-valued-classrel-all\{i:l\}(Info;A;X)  {}\mRightarrow{}  (\mforall{}i:Id.  hdf-single-valued(pr  i;Info;A)))
Date html generated:
2016_05_17-AM-08_48_51
Last ObjectModification:
2016_01_17-PM-02_43_07
Theory : event-ordering
Home
Index