Nuprl Lemma : solves-information-flow_wf
∀[Info,T:Type]. ∀[S:Id List]. ∀[F:information-flow(T;S)]. ∀[es:EO+(Info)]. ∀[In,X:EClass(T)]. ∀[f:sys-antecedent(es;X)].
  (solves-information-flow(es;T;S;F;In;X;f) ∈ ℙ)
Proof
Definitions occuring in Statement : 
solves-information-flow: solves-information-flow(es;T;S;F;In;X;f), 
sys-antecedent: sys-antecedent(es;Sys), 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
information-flow: information-flow(T;S), 
Id: Id, 
list: T List, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
solves-information-flow: solves-information-flow(es;T;S;F;In;X;f), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
prop: ℙ, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
top: Top, 
so_lambda: λ2x.t[x], 
sys-antecedent: sys-antecedent(es;Sys), 
es-E-interface: E(X), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
sq_type: SQType(T), 
guard: {T}, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
true: True, 
cand: A c∧ B, 
so_apply: x[s], 
exists: ∃x:A. B[x], 
es-interface-locs-list: es-interface-locs-list(es;X;S)
Latex:
\mforall{}[Info,T:Type].  \mforall{}[S:Id  List].  \mforall{}[F:information-flow(T;S)].  \mforall{}[es:EO+(Info)].  \mforall{}[In,X:EClass(T)].
\mforall{}[f:sys-antecedent(es;X)].
    (solves-information-flow(es;T;S;F;In;X;f)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_16-PM-11_15_09
Last ObjectModification:
2015_12_29-AM-10_30_03
Theory : event-ordering
Home
Index