Nuprl Lemma : tree-flow-convergent
∀[Info:Type]. ∀[es:EO+(Info)]. ∀[X:EClass(Top)]. ∀[f:E(X) ⟶ E(X)].
  convergent-flow(es;X;f) supposing tree-flow{i:l}(es;X;f)
Proof
Definitions occuring in Statement : 
tree-flow: tree-flow{i:l}(es;X;f), 
convergent-flow: convergent-flow(es;X;f), 
es-E-interface: E(X), 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
top: Top, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
tree-flow: tree-flow{i:l}(es;X;f), 
and: P ∧ Q, 
exists: ∃x:A. B[x], 
convergent-flow: convergent-flow(es;X;f), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
subtype_rel: A ⊆r B, 
es-E-interface: E(X), 
prop: ℙ, 
not: ¬A, 
false: False, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
guard: {T}, 
sq_stable: SqStable(P), 
squash: ↓T, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
trans: Trans(T;x,y.E[x; y]), 
true: True, 
label: ...$L... t, 
Id: Id, 
sq_type: SQType(T), 
irrefl: Irrefl(T;x,y.E[x; y])
Latex:
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(Top)].  \mforall{}[f:E(X)  {}\mrightarrow{}  E(X)].
    convergent-flow(es;X;f)  supposing  tree-flow\{i:l\}(es;X;f)
Date html generated:
2016_05_16-PM-10_17_06
Last ObjectModification:
2016_01_17-PM-07_27_35
Theory : event-ordering
Home
Index