Nuprl Lemma : tree-flow-order-preserving
∀[Info:Type]
  ∀es:EO+(Info). ∀X:EClass(Top). ∀f:E(X) ⟶ E(X).
    (interface-order-preserving(es;X;f) ⇒ tree-flow{i:l}(es;X;f) ⇒ global-order-preserving(es;X;f))
Proof
Definitions occuring in Statement : 
tree-flow: tree-flow{i:l}(es;X;f), 
global-order-preserving: global-order-preserving(es;X;f), 
interface-order-preserving: interface-order-preserving(es;X;f), 
es-E-interface: E(X), 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
uall: ∀[x:A]. B[x], 
top: Top, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
uimplies: b supposing a, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
es-E-interface: E(X), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
global-order-preserving: global-order-preserving(es;X;f), 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
es-locl: (e <loc e'), 
es-causl: (e < e'), 
squash: ↓T, 
rev_implies: P ⇐ Q
Latex:
\mforall{}[Info:Type]
    \mforall{}es:EO+(Info).  \mforall{}X:EClass(Top).  \mforall{}f:E(X)  {}\mrightarrow{}  E(X).
        (interface-order-preserving(es;X;f)
        {}\mRightarrow{}  tree-flow\{i:l\}(es;X;f)
        {}\mRightarrow{}  global-order-preserving(es;X;f))
Date html generated:
2016_05_16-PM-10_17_21
Last ObjectModification:
2016_01_17-PM-07_25_30
Theory : event-ordering
Home
Index