Nuprl Lemma : two-intersection-one-intersection
∀A:Id List. ∀W:{a:Id| (a ∈ A)}  List List.  (two-intersection(A;W) ⇒ one-intersection(A;W))
Proof
Definitions occuring in Statement : 
two-intersection: two-intersection(A;W), 
one-intersection: one-intersection(A;W), 
Id: Id, 
l_member: (x ∈ l), 
list: T List, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
two-intersection: two-intersection(A;W), 
one-intersection: one-intersection(A;W), 
l_all: (∀x∈L.P[x]), 
member: t ∈ T, 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
int_seg: {i..j-}, 
uimplies: b supposing a, 
guard: {T}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
not: ¬A, 
top: Top, 
less_than: a < b, 
squash: ↓T
Latex:
\mforall{}A:Id  List.  \mforall{}W:\{a:Id|  (a  \mmember{}  A)\}    List  List.    (two-intersection(A;W)  {}\mRightarrow{}  one-intersection(A;W))
Date html generated:
2016_05_16-PM-00_01_26
Last ObjectModification:
2016_01_17-PM-03_51_07
Theory : event-ordering
Home
Index