Nuprl Lemma : bind-nxt_wf
∀[A,B,C:Type]. ∀[Y:B ⟶ hdataflow(A;C)]. ∀[p:hdataflow(A;B) × bag(hdataflow(A;C))]. ∀[a:A].
  bind-nxt(Y;p;a) ∈ hdataflow(A;B) × bag(hdataflow(A;C)) × bag(C) supposing valueall-type(C)
Proof
Definitions occuring in Statement : 
bind-nxt: bind-nxt(Y;p;a), 
hdataflow: hdataflow(A;B), 
valueall-type: valueall-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
product: x:A × B[x], 
universe: Type, 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
bind-nxt: bind-nxt(Y;p;a), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
squash: ↓T, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓, 
has-valueall: has-valueall(a), 
prop: ℙ, 
pi1: fst(t), 
pi2: snd(t), 
subtype_rel: A ⊆r B
Latex:
\mforall{}[A,B,C:Type].  \mforall{}[Y:B  {}\mrightarrow{}  hdataflow(A;C)].  \mforall{}[p:hdataflow(A;B)  \mtimes{}  bag(hdataflow(A;C))].  \mforall{}[a:A].
    bind-nxt(Y;p;a)  \mmember{}  hdataflow(A;B)  \mtimes{}  bag(hdataflow(A;C))  \mtimes{}  bag(C)  supposing  valueall-type(C)
Date html generated:
2016_05_16-AM-10_42_39
Last ObjectModification:
2016_01_17-AM-11_11_42
Theory : halting!dataflow
Home
Index